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Summary. Linear-programming methods are powerful and efficient tools for 
objectively analysing seismic focal mechanisms and are applicable to a wide 
range of problems, including tsunami warning and nuclear explosion 
identification. The source mechanism is represented as a point in the six- 
dimensional space of moment-tensor components. Each observed polarity 
provides an inequality constraint, linear with respect to the moment tensor 
components, that restricts the solution to a half-space bounded by a hyper- 
plane passing through the origin. The intersection of these half-spaces is the 
convex set of all acceptable solutions. Using linear programming, a solution 
consistent with the polarity constraints can be obtained that maximizes or 
minimizes any desired linear function of the moment tensor components; the 
dilatation, the thrust-like nature, and the strike-slip-like nature of an event are 
examples of such functions. The present method can easily be extended to fit 
observed seismic-wave amplitudes (either signed or absolute) subject to 
polarity constraints, and to assess the range of mechanisms consistent with a 
set of measured amplitudes. 
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Introduction 
Seismologists ordinarily determine seismic focal mechanisms from seismic-wave polarities 
graphically. They plot P-wave first motions on a map of the focal sphere and search 
manually for orthogonal nodal planes that separate compressions from dilatations. The 
subjectiveness of this method is a serious drawback. Possible solutions that are qualitatively 
different from a preferred mechanism are often overlooked. Moreover, the non-uniqueness 
of the nodal planes is difficult t o  determine and to communicate, because it involves four 
values (say, two dips and two strikes) connected by one constraint (orthogonality). 

Several seismologists (Kasahara 1963 ; Jarosch 1968; Dillinger, Harding & Pope 1972; 
Whitcomb 1973; Khattri 1977) have tried to make this process objective, commonly by 
testing many possible mechanisms for consistency with the observations. They assume a 
double-couple mechanism, specified by the dip and strike of the fault plane and the rake 
angle of the slip vector, or by the plunges and trends of the P- and T-axes. Searching 
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strategies are then necessary because the theoretical amplitudes of radiated waves are non- 
linear functions of these variables. Such strategies are inefficient because a large number 
of mechanisms must be tested. For many applications, such as automatic real-time 
monitoring of seismicity or tsunami warning, a fast, objective method is needed. If a 
moment tensor representation of the source (Gilbert 1971 ; Stump & Johnson 1977) is used, 
the amplitude functions are linear, and methods more efficient than searching can be used. 
G. E. Backus (unpublished) has suggested such a method, in which compressional-wave 
polarities are assigned artificial positive and negative amplitudes that total zero. Finding the 
moment tensor that best fits these amplitudes (in a least-squares sense) is then a linear 
inverse problem. 

This report suggests another method - combining the moment tensor source represen- 
tation with linear programming techniques. Linear programming differs from conventional 
analytical methods in that it can deal with inequalities and absolute values. It is widely used 
in economics because such quantities as production levels cannot be negative (Dantzig 
1963), and has occasionally been applied in the physical sciences for similar reasons, for 
example to enforce non-negativity restrictions on density (Sabatier 1977). It has also been 
used to devise robust techniques for inverting erratic data, by minimizing the sum of the 
absolute values (L1 norm) of the data residuals rather than the sum of their squares (L2 
norm) (Claerbout & Muir 1973). The application of linear programming proposed here, 
however, is motivated by the fact that polarity data can be expressed as linear inequalities. 

Method 

The moment tensor for a point source is, in general, a function of time or, equivalently, 
frequency: 

I Mxxtw) Mxylw)  Mxz(0) 

Mx,(w) M y y ( 4  Myz(w) . 
M X Z ( 0 )  M,z(w) MZ, (w )  

Let its six independent components be arranged as a column vector 
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( 2 )  

The amplitude of a seismic wave or mode ;(a) is related by a linear differential operation to 
the moment tensor components; in the frequency domain, this operation reduces to 

where 

is a column vector whose components are spectra of Green's functions and that depends on 
the type of wave and the positions of the source and receiver. Appendix A gives the 
components of for far-field body waves in a homogeneous medium. Then a polarity 
constraint takes the form (henceforth, the frequency dependence will not be explicitly 
indicated) 
' T  -+ g m G O  

or 
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depending on its polarity. By changing the sign of the components of & the second form 
can be transformed into the first, and so without loss of generality we consider only con- 
straints of the form (5). 

At their simplest, linear programming methods apply to non-negative variables. 
Unrestricted variables, such as the moment tensor components, are treated by expressing 
them as the differences of non-negative variables, only one of which is allowed t o  differ from 
zero: 

m = m  - m .  
A general polarity constraint now takes the form 

(7) 
+ -f+ +- 

+T ++ +T +- g m - g  m G O .  

This expression becomes an equality constraint if we introduce a non-negative ‘slack’ 
variable s: 

g m - g  m + s = O .  

It will also prove useful to  introduce a non-negative auxiliary or ‘error’ variable e, so that our 
equation becomes, finally, 

g m - g  m + s - e = O .  

We require that either s or e be zero. e # 0 implies 8‘ m’ > 0, whereas s # 0 implies g” m’ < 0.  
A vector m’ satisfies the original constraint (5) only if e = 0 in (10). 

Now, if there are 1 polarity observations, we have a system of equations of the form of 
(1 O), which can be written 

(9) 
+T++ +T+- 

(1 0 )  
+T++ +T+- 

A; = 0, (1 1) 
where 

A 

and 

[C I -G I I I -  I ]  

G is an 1 x 6 matrix whose rows are the g’ vectors for the 1 observations, and 1 is the 1 x 1 
identity matrix; t and e’ are 1-vectors of  the slack and error variables. Thus, if we use a 
moment-tensor representation of the source, the set of polarity data yields a system of 
linear equality constraints in non-negative variables. All acceptable solutions must satisfy this 
constraint system exactly. This is precisely the type of constraint that linear programming 
methods are designed to handle. A slight complication arises because all constants on the 
right sides of the inequalities are zero. To exclude moment tensors that are identically zero, 
a normalization restraint must be added. In the examples presented here, we have set the L1 
norm of the vector m’ at  unity. The vanishing of the right side constants also forces us t o  
modify slightly the way the simplex algorithm handles unrestricted variables, which are 
expressed as the difference of two non-negative variables. If the right side constants did not 
vanish, then the simplex algorithm would automatically enforce the requirement that a t  
least one of these non-negative variables must vanish. Since they do vanish, it  is necessary t o  
add an explicit test to  the algorithm t o  ensure that this requirement is met. 

Other constraints on  the focal mechanism can also be incorporated, so long as they 
involve only linear functions of the moment tensor components. For example, the restraint 
M,, + My,, + M,, = 0 forces the focal mechanism t o  be purely deviatoric (that is, t o  involve 
n o  volume change). 
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The problem addressed by linear programming methods is to find the n-dimensional column 
vector % with non-negative components that maximizes a linear objective function u 3 zTt 
subject t o  the constraint is an 
n-vector (Hadley 1962;  Sakarovitch 1971). In addition, there exist quadratic programming 
methods, that can maximize or minimize a quadratic objective function of non-negative 
variables under the same types of constraints. 

Linear programming problems can be solved by the simplex algorithm, which transforms 
a given feasible solution (one that satisfies the constraints) t o  increase the objective function 
until it reaches its maximum value. For the focal mechanism problem as formulated here, an 
initial feasible solution can be obtained by choosing m' arbitrarily and determining d and 
from the equations of the form (10) that make up the system (1 1). We then choose objective 
coefficients so as to minimize I Z I :  
+ + + +  

= 4, where A is an m x n matrix, 6 is an m-vector, and 

c =  [ O I O , O I - ~ I T .  (14) 

This choice corresponds t o  finding a solution consistent with the polarity data. If n o  such 
solution exists, we obtain the solution that minimizes the L1 norm of the amplitudes for 
those polarities that are not satisfied. This procedure is reasonable because errors in 
determining polarities in the presence of noise are most likely for small signals and because 
errors in position on  the focal sphere will cause polarity reversals only for small signals near 
nodes. 

If a feasible solution exists, we discard the error variables (the solution will still remain 
feasible) and apply the simplex algorithm again with a new objective function. We discuss 
four possible programs for this objective function: t o  test observations for significance, to  
map out the entire solution set, to  find extreme values of amplitude bias for a set of stations, 
and to  find the limits of various physical characteristics of the solution. 

T E S T I N  C 0 BSE K V A T  I O N S  F O R  S I G N  I I ' I C A  N C  F. 

In general, not all the polarity observations for a given event are significant; some could be 
omitted without changing the set of acceptable solutions. To test a given observation for 
significance, we minimize the corresponding absolute amplitude. If this minitnuni value 
differs from zero, then all mechanisms consistent with the other constraints will satisfy the 
observation in question, and it therefore adds n o  new information. 

M A P P I N G  OIJT T H E  S E T  O F  POSSIBLE S O L U T I O N S  

Each polarity datum corresponds t o  a linear inequality in the six moment tensor 
components and restricts the solution to  a half-space of the 6-D moment tensor space. A set 
o f  polarities thus restricts the solution to lie in the set intersection of  many such half-spaces. 
This intersection is a convex set, and is completely defined by its vertices. We can calculate 
the solution corresponding to each vertex and thus give a mathematically complete 
description of the set of all feasible solutions. We chose all possible subsets s of five 
observations and for each subset we minimize 

u -  2 Iu;l. 
ir s 

If this minimum value is zero, the solution is a vertex. As a practical matter, many possible 
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subsets exist, and so it is more efficient to use a ‘backtrack algorithm’ (Wirth 1976; Page & 
Wilson 1979), which eliminates collections of subsets at an early stage. 

In practice, there are commonly hundreds or thousands of vertices, many of which 
represent nearly identical solutions, and so this method is not particularly useful, despite its 
apparent mathematical simplicity. 

F I N D I N G  E X T R E M E  V A L U E S  01: A M P L I T U D E  BIAS 

The magnitude or seismic moment of an earthquake is usually determined from an average 
of the amplitudes of seismic waves observed at several stations. This averaging reduces the 
bias introduced by failure to correct for the focal mechanism, but it does not completely 
eliminate such bias; observations near nodes or maxima of the radiation pattern may still 
distort the average. To evaluate the magnitude of this bias, we can seek solutions which 
maximize or minimize the average value by using the objective function defined in equation 
(1 5 ) ,  with s taken to be the set of seismic waves to  be averaged. Note that it is not necessary 
that the waves averaged be among those which supplied the polarity data. 

An important special case is the problem of tsunami warning. If the tsunami generation 
process is linear (as submarine landsliding, for example, is not) then, using the objective 
function just described, we can, for a given scalar seismic moment, determine the largest (or 
smallest) possible tsunami amplitudes consistent with a set of polarity observations. Further- 
more, by using seismic-wave amplitude observations, (as explained below under ‘further 
extensions’) we can take account of the effects of both seismic moment and focal 
mechanism, and determine the extreme tsunami amplitudes consistent with a data set 
containing amplitude and (optionally) polarity observations. 

F I N D I N G  P H Y S I C A L L Y  E X T K E M C  S O L U T I O N S  

Any physical parameter of a seismic event that can be expressed as a linear function of the 
moment tensor components can be used as an objective function. For example, the 
dilatation (volume change) of a source is the trace of the moment tensor, 

and may be used as an objective function to  determine the most ‘explosive’ or ‘implosive’ 
consistent mechanism. Similarly, the thrust-like nature of an event can be defined in terms 
of the amplitude of the compressional wave radiated downward, which is proportional to 
M,, (see Appendix A), the horizontal extension in the x-direction can be defined as M x x ,  
etc. Furthermore, it is possible to define objective functions that depend linearly on either 
the algebraic (signed) or absolute values of the moment tensor components. Appendix B 
gives several examples of useful physically motivated objective functions. 

Example 

We illustrate the above method by using long-period first-motion data for the Imperial 
Valley, California earthquake of 1979 October 15, obtained from 12 stations in the Global 
Digital Seismograph Network (GDSN) (Peterson e f  al. 1976). First motions can be 
determined for P-waves at  six stations, and for horizontally polarized shear waves at  all 12 
(Julian, Zirbes & Needham 1982). Table 1 lists the first motions, and Fig. 1 shows their 
positions on the focal sphere. 
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Table 1. Long-period first motions of the Imperial Valley earthquake of 1979 
October 15, 

Station 
code 

ANMO 

BOCO 

ZOBO 

KONO 

MAJO 

G U M 0  

SNZO 
T A T 0  
CTAO 
CHTO 
BCAO 
NWAO 

Epicentral 
distance 
(" ) 

7.7 

47.6 

66.4 

77.5 

82.8 

90.8 

97.8 
101.2 
107.4 
119.2 
122.9 
136.2 

Ep > Sta 
azimuth 
(" ) 

70 

117 

130 

25 

309 

281 

226 
309 
257 
322 

59 
255 

P 

Takeoff 
angle 
(" ) 

45.8 
45.8 
24.0 
24.0 
19.5 
19.5 
17.0 
17.0 
15.8 
15.8 
14.1 
14.1 
14.0 
14.0 
14.0 
14.0 
14.0 
14.0 

Phase 

P 
SH 
P 
SH 
P 
SH 
P 
SH 
P 
SH 
P 
SH 
SH 
SHdif 
SHdif 
SHdif 
SHdif 
SHdif 

First 
motion 

+ *  

+ *  
+ *  
+ *  
+ *  

- 

* 
* 

- 
- 
+ *  
+ 
+ 
+ *  

* - 
+ 

* - 
+ 
- 

- 

Figure 1. Equal-area projection of lower focal hemisphere, showing first-motion data from Table 1. 
P-wave polarities are indicated by pluses (compressions) and circles (dilatations), and SH-wave polarities 
by arrows. 

The observations are mapped on to the focal sphere using a preliminary location supplied by 
the US Geological Survey, National Earthquake Information Service (lat. 32.641°N, long. 
115.325"W; depth, 10 km) and the continental earth model PEMC (Dziewonski, Hales & 
Lapwood 1975). The compressional- and shear-wave speeds at the focus in this model are 
5.8 and 3.45 km s-l . 

Eleven of these first-motion data are significant (asterisks, Table 1). Table 2 gives the 
principal axis representations of the moment tensors for three extreme focal mechanisms, 



Analysing seismic-source mechanisms 437 
Table 2. Extreme solutions 

Axis 

Most T 
thrust-like I 

P 
Most T 
normal I 

P 
Least T 
dip-slip I 

P 

Most Thrus t - l ike  

Moment 

0.366 
0.052 

0.450 
-0.418 

-0.036 
-0.414 

0.450 
0.000 

-0.451 

Plunge 
(” ) 

23 
65 

8 
2 

87 
3 
2 

86 
3 

Most Normal 

Trend 
(” ) 

268 
108 

1 
291 
161 
21 

292 
163 

22 

Least Dip-slip 

Figure 2. Comparison of’ predicted and observed first motions for three extreme solutions listed in Table 
2. Only significant data (asterisks, Table 1) are shown, using the same symbols as in Fig. 1. Theoretical 
nodal curves are shown for P-waves (solid) and SH-waves (dashed). P, T, and I mark the positions of the 
principal axes of the moment tensor. 

and Fig. 2 compares the predicted polarities with those observed. Because no amplitude 
information is used in this analysis, the principal moments in Table 2 are determined only 
within an arbitrary factor. 

These three mechanisms have extreme values for the amplitude of the compressional wave 
radiated downward. The mechanism labelled ‘most thrust-like’ has the largest (i.e. most 
compressional) amplitude, the ‘most normal’ mechanism has the smallest (most rare- 
factional) amplitude, and the ‘least dip-slip’ mechanism has the smallest absolute amplitude 
(zero, in this case). 

Because the mechanisms are not  forced t o  be double couples, the nodal curves are no 
longer orthogonal great circles on the focal sphere (although the ‘least dip-slip’ mechanism 
is very close t o  this case). All the focal mechanisms are similar, and the smallness of their 
intermediate principal moments shows that they are predominantly double couples. 

The use of shear-wave polarities has not been common in focal-mechanism studies and so 
deserves further comment. When data from properly oriented seismometers are available, the 
determination of shear-wave polarities is feasible. (With digital data, synthetic traces with 
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any orientation can be generated numerically.) First motions for vertically polarized waves 
are hard t o  determine, however, because the signal is commonly contaminated by com- 
pressional-wave energy generated by mode conversion near the receiver; this problem also 
complicates attempts to  measure polarization angles for shear waves. For horizontally 
polarized waves, however, no mode conversion occurs, and first motions are generally clearer 
and have better signal-to-noise ratios than those for compressional waves. In principle, 
surface-wave polarities could also be used, although precise knowledge of the regional phase 
velocities would be required, and the excitation coefficients depend strongly on  focal depth. 

Comparison with searching methods 

In order to  compare the efficiency of linear programming and searching methods, a number 
of benchmark tests were performed using the searching program F O C A L  1 ,  of Whitcomb 
and Garmany (Whitcomb 1973) and a program that uses the linear programming method 
described in this paper. Both programs are written in F O R T R A N ,  and were compiled with 
the portable I O R T K A N  7 7  compiler (Feldman & Weinberger 1983) and run on a Digital 
Equipment Corporation PDP-11/70 minicomputer under the Unix operating system. 

It should be emphasized that the results of a benchmark test such as this depend not only 
on  the algorithms used, but also on details of how the computer programs are written. 
Nevertheless, the results in this case are probably not  misleading. The searching program is 
optimized in many ways, whereas the linear-programming program uses a very simple version 
of the simplex algorithm, which is far from optimal. For example, it  takes no advantage of 
the fact that the matrices involved are quite sparse. Therefore, this benchmark test is, if 
anything, probably biased in favour of the searching program. Table 3 gives execution times 
of both programs for tests with various numbers of  polarity observations. The linear 
programming times are divided into two parts: the time to  determine which data are 
significant, and the time t o  find 1 0  extremal solutions consistent with the significant data. 
(Fewer than 1 0  extremal solutions are adequate t o  determine the range of possible solutions 
for any geophysical purpose.) The searching program provides for coarse and medium- 
resolution searching, as well as normal resolution; times for all three options are shown in 
the table. 

The effort required for the linear programming method t o  identify significant data 
obviously increases rapidly with the number of observations. This is a defect of the 
organization of the current version of the computer program, and is easily correctable. At 
present, all the observations are used to  generate the constraint matrix and then each 
observation is tested for significance, which usually requires several pivot operations on  the 
matrix per observation. Since, typically, most of the observations are not  significant, the 
matrix is several times larger than necessary, and the pivot operations are unnecessarily slow. 
If observations were tested first, and entered only if they were significant, the amount of 

'Table 3 .  Benchmark test results. 

Execution time (s) 

No. of 
data 

15 
30 
60 

Linear 
programming 

Searching 

Coarse Medium Fine 

2.1 + 6.8 = 8.9 30.1 35.2 157.8 
6.1 + 6.4 = 12.5 31.4 48.4 229.5 

43.1 + 10.3 = 53.4 39.0 68.4 361.5 
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labour involved would be greatly reduced and would not increase rapidly with the number of 
data. (It would, however, still be necessary t o  retest the significance of each retained 
observation using the final constraint matrix, in case data that were entered after it had 
rendered it redundant. Data identified as redundant during construction of the constraint 
matrix are guaranteed t o  be truly redundant, but the process cannot necessarily identify all 
redundant observations until the matrix is complete.) 

Extensions of the method 

So far, we have dealt only with polarity data, which we have assumed t o  be perfect and free 
from errors, and we have considered completely general moment tensor sources and sources 
that were constrained t o  be purely deviatoric. There are several ways in which the linear 
programming method can be extended t o  overcome these limitations. We will briefly discuss 
three of these extensions here. The actual implementation and testing of them is left for the 
future. 

D O U B L E - C O U  P L E  C O N S T R A I N T  

As we have seen, requiring an earthquake mechanism t o  be purely deviatoric is equivalent t o  
constraining the trace of the moment tensor t o  vanish, a constrain that is linear and easily 
imposed. To restrict solutions t o  be double couples, it is also necessary t o  con- 
strain the determinant of the moment tensor t o  vanish. This constraint is cubic and must 
be dealt with by linearization and iteration. Such an extension, while undoubtedly possible, 
would probably involve sacrificing many of the advantages of  a linear formulation. For 
example, convergence of the iterative process would not be  assured, and solutions might not 
be unique and could depend in an unpredictable way upon the initial solution chosen. 

U S I N G  A M P L I T U D E S  

So far, we have considered only polarity data. However, L1-norm fitting of observed 
amplitudes amounts t o  minimizing a linear objective function, and so achievement of such a 
fit consistent with a set of observed polarities is a linear-programming problem and can be 
incorporated into the present method. The robustness of L1-norm fitting makes this method 
particularly attractive for use with seismic-wave amplitude observations, which commonly 
exhibit much scatter. Moreover, it is possible to  deal with both signed-amplitude 
observations, for which the fitting error is IuObs - u,,lc 1, and absolute-amplitude 
observations, for which it is lu&s - IuCalcI 1. Least-squares fitting methods, in contrast, can 
deal with amplitudes only if the polarities are known, which is frequently not the case, for 
example with noisy or dispersed signals. 

To fit a signed amplitude, we add t o  our system of constraint equations, ( l l ) ,  an 
equation much like (1 0): 

g m - g  m + s - e = u O b s  

then, since 

ucalc = g  m - g m 

and since s and e are non-negative and one of them is zero, we have 

(19) 
+r++ "7''- 

(20) -+T-++ +T+- 

s + e = Iu&s ~ uc,lc I. (21) 
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Thus to fit a set of signed amplitudes, we take as the objective function the sum of the s 
and e terms for the observations. 

To fit an absolute-amplitude observation, we append two equations with two new 
variables, x and y .  t o  the system (1 1):  
+T++ q+- g m - g  m + s - e = O  (22) 

s +  f ? + X - y = U , b s .  (23) 

x and y are non-negative and we require one of them to be zero. By the same reasoning used 
above, we obtain from (22) 

and from (23) 

and 

(26) I x + Y = /U,bS - IUcalc I 1. 

In this case, the correct objective function is the sum of the x and y terms for the 
observations. 

Since observed data always are contaminated by errors, it is just as important to 
determine how tightly a focal mechanism is constrained by a data set as it is to  find the best- 
fitting mechanism. To assess the uniqueness o f  the mechanism, we can place bounds on  the 
allowable misfit for each amplitude observation, 

and investigate the range of solutions that are consistent with a set of  such constraints. The 
bounds (27) lead to  equations similar t o  (1 9): 
+r++ q- f -  g m - g  m + r = u m a X  
y-++ q-f- 
g m - g  m - s = u , i n ,  

(28) 

(29) 

where r and s are new non-negative slack variables. (Note that the polarity constraint of 
equation (9) may be thought of as a special case of an amplitude constraint with either 
u,,, or umin equal t o  zero.) Similarly, an unsigned amplitude constraint 

is equivalent t o  the equations 
+T++ +7-+- g m - g  m + - e = O  

s +  e + f = u , , ,  (32) 

s + e - g = u , i , ,  (33) 

where s, e, f, and g are, as always, non-negative slack and error variables. 
Thus there are two ways of dealing with amplitudes by linear programming methods, and 

they can be applied to  any combination of signed- and absolute-amplitude observations and 
optional polarity constraints. We may determine the mechanism that fits the amplitudes best 
(in terms of the L1-norm), or we may place bounds on the allowable (signed or absolute) 
theoretical amplitudes for the observations (or on  their sum) and then determine the set of 
mechanisms consistent with these constraints. 
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An important application of these techniques for analysing amplitude observations arises 
in the problem of determining the seismic moment of  an explosion. In addition to the 
explosion itself, the moment tensor usually contains a deviatoric component caused by the 
triggered release of tectonic strain, which tends t o  bias estimates of the moment of the 
explosion. The linear programming method can deal with this problem by computing the 
largest and smallest possible values of the explosive component of  the moment tensor for all 
mechanisms that satisfy the amplitude observations within the observational errors. 

I M P E R 1 ; E C T  P O L A R I T Y  D A T A  

Another assumption we have made so far is that all the polarity data are correct;solutions 
have been considered acceptable only if they are consistent with all the polarities. It is 
simple, however, t o  relax this restriction: instead of insisting that all the error variables e in 
the system ( I  1 )  must vanish, we ask only that their sum be less than some limit E. After an 
initial solution satisfying this condition is obtained by using the simplex algorithm with the 
objective function ( 1  4), we add an equation t o  ensure that it remains satisfied: 

e,  + ez  + . . . + e l i  s , + ~  = E (34) 

where is a new non-negative slack variable. 

Conclusions 

Applied t o  the moment tensor representation of a seismic source, linear programming is a 
powerful and efficient method for analyzing seismic-wave polarity and amplitude 
observations. It can quantitatively and objectively delimit the set of focal mechanisms 
consistent with a set of  polarity observations with a fraction of the effort required by 
searching methods. It can also find focal mechanisms consistent with observed polarities that 
best fit (in terms of the L1 norm) a set of amplitude observations, even when some (or all) 
of these amplitudes are of  unknown sign. The speed and objectivity of the linear- 
programming approach ideally suits it t o  automatic rapid determination of  earthquake 
mechanisms, for example as part of a real-time tsunami warning or earthquake prediction 
system. 
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Appendix A: excitation of body waves by point sources 

The amplitude of any type of seismic wave or mode excited by a point source is a linear 
function of the moment-tensor components (see equation ( 3 ) ) .  Table A1 lists the Green’s 
functions for far-field body waves in a homogeneous isotropic medium as functions of the 
departure angle i (zero denotes straight downward) and departure azimuth {. 

Table A l .  Body-wave Green’s functions, 

P sv sv 

gxx  sin’ i cos’ 5 - + sin 2i cosz5 f sin i sin 25 

RXY sinZ i sin 25 - +sin 2i sin 25 - sin i cos 25 

sin2 i sin2 5 

sin 2 i cos 5 

- +sin 2i sinZ 5 

- cos 2i cos < 
- f sin i sin 23 

cos i sin 5 

- cos i cos 5 

RYY 

R X Z  

gYZ sin 2i sin 5 - cos 2i sin 5 

Rzz  cos’i + sin 2i 0 

A common factor of 6 ( t  - R/u)/(4.rrpu3R) has been omitted, where p is the density a t  the 
source, u is the seismic wave (P  or S, as appropriate) speed at the source, and R is the 
distance to the observation point; 6 is the Dirac delta function. The moment-tensor 
components are expressed in a right-handed Cartesian coordinate system, with the z-axis 
directed downward. i is the angle between the ray direction and the +z-axis, and ( is 
measured from the +x-axis toward the +y-axis. If the +x-axis is directed northward, then 
these definitions agree with the conventional definitions of take-off angle and azimuth. The 
compressional (P)-wave amplitude is taken as positive for particle motion away from the 
source. Shear-wave amplitudes are positive for particle motion in the direction of decreasing 
i for vertically polarized ( S V )  waves, and in the direction of decreasing { for horizontally 
polarized ( S H )  waves. 
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Appendix B: some physically motivated objective functions for moment tensors 
Any linear function of the variables in a linear programming problem may be used as an 
objective function. In the case of focal mechanisms, the variables consist of the moment 
tensor components and the slack and error variables (equation (1 3)). Furthermore, each 
moment tensor component is expressed as the difference of two non-negative numbers, one 
of which is zero, so it is possible to design objective functions that depend on absolute 
values of moment tensor components. 

An important class of objective functions is those that depend only on the moment 
tensor components, and seek to maximize or minimize some physical characteristic of the 
focal mechanism. Table B1 gives the Coefficients of a few such functions that have been 
found to be useful. 
Table B1. Objective coefficients. 

Explosive 1 
-1 

Thrus t-like 0 
0 

Horizontal cosz r 
Extension - cos* r 
Vertical -1 
CLVD 1 
Horizontal 3 cos’r - 1 
CLVD 
Vertical 0 
strike-slip 0 

- 3 cos’r + 1 

MXY 
0 
0 
0 
0 
sin 5 cos r 

- sin r cos r 
0 
0 
3 sin 5 cos S 

- 3 sin f cos r 
0 
0 

MYY M x ,  My2 M,z 

1 0 0 1 
-1 0 0 -1 

0 0 0 1 
0 0 0 -1  
sin2 5 0 0 0 

- sin’ r 0 0 0 
-1 0 0 2 

1 0 0 - 2  
3 sinZ 5 - 1 0 0 -1 

- 3 sin2r + 1 0 0 1 
0 -1 - 1  -1 
0 -1 -1  -1 

For each function, there are two rows of six coefficients each; coefficients in the upper row 
apply to the vector m” and the lower row applies to 2- (see equations (7) and (13)). In 
other words, the coefficient in the upper row applies when the moment tensor component 
is positive, and the coefficient in the lower row applies (to the absolute value) when the 
component is negative. The variable f gives the azimuth of the direction of horizontal 
extension in the two cases where it appears. 

Most of these cases attempt to force the moment tensor (expressed as a six-vector) into 
some particular direction by maximizing its dot product with a specified vector. In these 
cases, the corresponding coefficients in the two rows are equal in magnitude and opposite in 
sign, so that the algebraic value of the component is dealt with. Examples are the ‘explosive’ 
case, which maximizes the trace of the moment tensor, M x x  + M Y y  + M,,, and the ‘thrust- 
like’ case, which maximizes M,,. M,, is proportional to the amplitude of the downward- 
radiated compressional wave (see Appendix A), or equivalently to the vertical extension 
accompanying the event. Similarly, the ‘horizontal extension’ case maximizes the extension 
in any specified horizontal direction. The ‘CLVD’ cases seek solutions that are like 
‘Compensated Linear Vector Dipoles’ (Knopoff & Randall 1970) with particular 
orientations. For each of these cases, it is possible to reverse the sign of all the coefficients, 
so as to minimize algebraically, rather than maximize, the relevant quantity. 

The ‘vertical strike-slip’ case, on the other hand, deals with absolute values of the moment 
tensor components, seeking to minimize IM,, I + lMyz I + IM,, 1 because, for a vertical 
strike-slip faulting mechanism, all these components vanish. In this case, the coefficients in 
the two rows are identical. 

Obviously, this table is incomplete; the number of potentially useful objective functions 
is virtually limitless. 




